High School Science Virtual Learning

Chemistry

 Limiting Reactants April 24th, 2020
Chemistry Lesson: April 24th 2020

Objective/Learning Target:

The learner will be able to determine the limiting reactant in a reaction and calculate the theoretical and percent yield for a problem with multiple reactants. They will also be able to calculate the amount of excess reactant leftover.

$$
\begin{gathered}
\text { Bell Ringer } \\
4 \mathrm{FeCl}_{3}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{Cl}_{2}
\end{gathered}
$$

1. How many moles of Chlorine gas can be produced if 4 moles of FeCl_{3} reacts with 4 moles of O_{2} ?
2. How many moles of the excess is leftover?

Bell Ringer Answers:

1. $4 \mathrm{motFeCl}{ }_{3} \times\left(6 \mathrm{~mol} \mathrm{Cl} / 2 \mathrm{matFeCl} \mathrm{m}_{3}\right)=6 \mathrm{~mol} \mathrm{Cl} 2$
$4 \sigma_{2} \times\left(6 \mathrm{molCl} \mathrm{C}_{2} / 3\right)=8 \mathrm{~mol}_{2}$
2. $4 \mathrm{~mol} \mathrm{FeCl}_{3} \times\left(3 \mathrm{~mol} \mathrm{O}_{2} / 4 \mathrm{~mol} \mathrm{FeCl}_{3}\right)=3 \mathrm{~mol} \mathrm{O}_{2}$ used $4 \mathrm{~mol} \mathrm{O}_{2}-3 \mathrm{~mol} \mathrm{O}_{2}$ used $=1 \mathrm{~mol} \mathrm{O} \mathbf{O}_{2}$ leftover

Lesson:

Limiting Reactant Problems Give you a chance to practice all areas of stoichiometry. Review with the following video and do the practice on the next slide.

Limiting Reagent Made Easy-Ketzbook (8:10)

Practice

$$
-\mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow _\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

Given 20.0 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $50.0 \mathrm{~g} \mathrm{O}_{2}$ answer the following.

1) Balance the reaction.
2) Which reactant is the limiting reagent?
3) How many grams of CO_{2} are formed?
4) How many grams of the excess reactant remains after the reaction?
1. $\underline{2 C}_{2} \mathrm{H}_{6}+\underline{7 \mathrm{O}_{2}} \rightarrow \underline{4} \mathrm{CO}_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O}$
2. $20.0 \mathrm{~g}_{2} \mathrm{H}_{6} \times\left(1 \mathrm{C}_{2} \mathrm{H}_{6}+30.0 \mathrm{ge}_{2} \mathrm{H}_{6}\right) \times\left(4 \mathrm{~mol} \mathrm{CO}_{2}+2 \mathrm{~m} \mathrm{G}_{2} \mathrm{H}_{6}\right)=1.33 \mathrm{~mol} \mathrm{co}_{2}$ $50.0 \mathrm{gO}_{2} \times\left(1\right.$ mote $\left._{2} / 32 . \mathrm{gOO}_{2}\right) \times\left(4 \mathrm{~mol} \mathrm{CO} 2 / 7\right.$ moto $\left._{2}\right)=0.893 \mathrm{~mol} \mathrm{CO} 2$
O_{2} is limiting
3. $0.893 \mathrm{mateO}_{2} \times\left(44.0 \mathrm{~g} \mathrm{CO}_{2} / 1 \mathrm{mateO}_{2}\right)=39.3 \mathrm{~g} \mathrm{CO}_{2}$
4. $50.0 \mathrm{~g} \mathrm{~g}_{2} \times\left(1\right.$ mot $\left._{2} / 32.0 \mathrm{~g} \mathrm{~g}_{2}\right) \times\left(2\right.$ mote $\mathrm{C}_{2} \mathrm{H}_{6} / 7$ mat $\left._{2}\right) \times\left(30.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} / 1\right.$ mote $\left.\mathrm{m}_{2} \mathrm{H}_{6}\right)$
$=13.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$ used
$20.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$ (starting) $-13.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$ (used) $=6.6 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$ remaining

Try some more:

Quizizz- Limiting Reactant

Another Quizizz- Limiting Reactant

Xtra Video

How to Find Limiting Reactants (Strawberry smoothie)-
Melissa Maribel(8:51)

