

High School Science Virtual Learning

Chemistry Limiting Reactants April 24th, 2020

Chemistry Lesson: April 24th 2020

Objective/Learning Target:

The learner will be able to determine the limiting reactant in a reaction and calculate the theoretical and percent yield for a problem with multiple reactants. They will also be able to calculate the amount of excess reactant leftover.

Bell Ringer 4 $\operatorname{FeCl}_3 + 3O_2 \rightarrow 2\operatorname{Fe}_2O_3 + 6\operatorname{Cl}_2$

- 1. How many moles of Chlorine gas can be produced if 4 moles of FeCl₃ reacts with 4 moles of O_2 ?
- 2. How many moles of the excess is leftover?

Bell Ringer Answers:

 4 mol FeCl₃ x (6 mol Cl₂/4 mol FeCl₃) = 6 mol Cl₂ 4 mol O₂ x (6 mol Cl₂/3 mol O₂) = 8 mol Cl₂
4 mol FeCl₃ x (3 mol O₂/4 mol FeCl₃) = 3 mol O₂ used 4 mol O₂ - 3 mol O₂ used = 1 mol O₂ leftover

Lesson:

Limiting Reactant Problems Give you a chance to practice all areas of stoichiometry. Review with the following video and do the practice on the next slide.

Limiting Reagent Made Easy-Ketzbook (8:10)

Practice

$$\underline{C_2H_6} + \underline{O_2} \rightarrow \underline{CO_2} + \underline{H_2O}$$

Given 20.0 g of C_2H_6 and 50.0 g O_2 answer the following.

- 1) Balance the reaction.
- 2) Which reactant is the limiting reagent?
- 3) How many grams of CO_2 are formed?
- 4) How many grams of the excess reactant remains after the reaction?

Answers

- 1. $\underline{2}C_2H_6 + \underline{7}O_2 \rightarrow \underline{4}CO_2 + \underline{6}H_2O$
- 2. $20.0g C_2 H_6 \times (1mol C_2 H_6/30.0g C_2 H_6) \times (4mol CO_2/2 mol C_2 H_6)=1.33 mol CO_2$ 50.0g O₂ × (1mol O₂/32.0g O₂) × (4 mol CO₂ /7mol O₂) =0.893 mol CO₂ **O₂ is limiting**
- 3. 0.893mol $\Theta_2 \times (44.0 \text{ g CO}_2/1 \text{ mol } \Theta_2) = 39.3 \text{ g CO}_2$
- 4. $50.0g O_2 x(1mol O_2/32.0g O_2) x(2 mole C_2H_6/7mol O_2) x(30.0g C_2H_6/1mol C_2H_6)$ = 13.4 g C_2H_6 used 20.0g C_2H_6(starting)-13.4g C_2H_6(used) = 6.6 g C_2H_6 remaining

Quizizz-Limiting Reactant

Another Quizizz- Limiting Reactant

Xtra Video

How to Find Limiting Reactants (Strawberry smoothie)-Melissa Maribel(8:51)